a2 United States Patent

Schreter et al.

US009483512B2

US 9,483,512 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) COLUMNAR DATABASE USING VIRTUAL
FILE DATA OBJECTS

(75) Inventors: Ivan Schreter, Malsch (DE); Thorsten
Glebe, Leimen (DE); Tobias Scheuer,
Bruchsal (DE)

(73) Assignee: SAP SE, Walldorf (DE)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/290,866

(22) Filed: Nov. 7, 2011
(65) Prior Publication Data
US 2013/0117247 Al May 9, 2013
(51) Imt.CL
GO6F 17/30 (2006.01)
(52) US. CL
CPC ..o GOG6F 17/30315 (2013.01)
(58) Field of Classification Search
USPC ... 707/649, 662, 679, 703, 704, 726, 727,

707/755, 758, 769, 781, 802, 812
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,901,403 B1*
7,653,651 Bl

5/2005 Bata et al.
1/2010 Pavlov

OTHER PUBLICATIONS

Jianling, Sun et al. “Transparent Access to Persistent Objects in
Object-Oriented Databases.” Technology of Object-Oriented Lan-
guages, 1997. Tools 24 Proceedings Beijing, China. Sep. 1997, Los
Alamitos, CA, USA, IEEE Comput. Soc, US. Jan. 1, 1998. pp.
38-42.

Kemper, Alfons et al. “Hyper: A Hybrid OLTP&OLAP Main
Memory Database System Based on Virtual Memory Snapshots.”
2011 IDEE 27th Int’l Conference ON, IEEE, Apr. 11, 2011. pp.
195-206.

* cited by examiner

Primary Examiner — Sangwoo Ahn
(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
Glovsky and Popeo, P.C.

(57) ABSTRACT

A plurality of virtual files are instantiated in a columnar
database. The columnar database includes a columnar data
store that persists tables of data contained therein to the
plurality of virtual files. Each virtual file is stored in physical
data storage and a portion of the virtual file can be cached
transiently in a persistence layer intermediate the columnar
data store and the physical data storage. The virtual files
each comprise a database object for storing data records.
Operation are processed, in the columnar database, using the
virtual files such that changes to virtual files resulting from
the operations of one transaction are isolated from changes
on the same virtual files resulting from the operations of
other transactions. Related apparatus, systems, techniques
and articles are also described.

7,890,469 B1* 2/2011 Maionchi et al. 707/654
2006/0136464 Al 6/2006 Rossmann
2009/0216990 A1* 82009 Vick et al.ccccccuenucee 711/172 15 Claims, 5 Drawing Sheets
200 \
210 —_| INSTANTIATE PLURALITY OF VIRTUAL FILES
IN COLUMNAR DATABASE
Y

220 —__|

PROCESS, IN COLUMNAR DATABASE, OPERATIONS USING
VIRTUAL FILES SUCH THAT CHANGES TO VIRTUAL FILES ARE
ISOLATED FROM EACH OTHER

US 9,483,512 B2

Sheet 1 of 5

Nov. 1, 2016

U.S. Patent

L Ol
JOVHOLS
Fan
N
NOILYOITddY NN
JOVHOLS JNALSIS¥3d | | o=
. vIvd -
) 7 ol
201
MHOMLIN |
|—H p—
- o
INITD N3O

00}

US 9,483,512 B2

Sheet 2 of 5

Nov. 1, 2016

U.S. Patent

¢ 'Old

¥3HLO HOVE WOY4 d31V10SI
34V ST14 TYNLHIA OL SFONVHI 1YHL HONS S314 TVNLAIA
ONISN SNOILYH3dO ‘ISYAVLYA HYNWNTOO NI 'SS3004d

[— 02¢

A

N\

3ASYaviva JvYNANTIOI NI
S3714 TVNLYIA 40 ALYENTd 3LVIINVLSNI

[~— 0lC

002

US 9,483,512 B2

Sheet 3 of 5

Nov. 1, 2016

U.S. Patent

£ 'oid
— ((— i
A% ZIE SNOILYDO1 SANNTOA JOVHOIS
SINNTOA 90T WOISAHd IV S3DVd A3MOLS | g VAva WY3L ¥IONOT
.
all ININOJINOD LNdLNO/LNANI
HIAVT 7T —
mozma_mmmu dO.LYNIJJI00D ﬂ Ve 04N
oz LNIOd3AvS \ﬁ SNLYLS 3Ovd
e 439907 A s
i — y —
¥344n4g | s39v49%0€ | S39Vd S39ovd S39Vd 23
3ovd | vomo1 | vnldia || 3aiov || moavHs | | 1 yamEaNod
i, 7
J
Gie €l e F1av L ZZNE TSy
, H3LYIANOD %0078 3344
50¢ IdV 20¢€ £0€ Idy 39Vd (743 LNIWIOYNYIN 3OYd
14 TVNLEIA | 3OVSHTLINI FONALSISHAd | 31nTosay
g —

3
34018 NWN10D

g1c d3OVNVI INIOdIAYS

PIE YIOVNYW 3OVd

€0¢ J40LS MOd
70l NOILYOIddY 39v¥0LS V1va

AN

00€

US 9,483,512 B2

Sheet 4 of 5

Nov. 1, 2016

U.S. Patent

¥ 'Ol4
(€Y ‘2d ‘1 Y)pesy (Y ‘1¥)pesy (1¥)pesy

" } : " — 0C¥

91 HEJS + JWWo) (c¥)pusddy L Mels

(€Y ‘2d ‘1 Y)pesy (24 '1¥)pesy (2d)peey

w | | | ! : i 0Zy

/1 MElS + Jluwo) G1 Me)s + Jwwo) (zy)pueddy zl ueis
(1Y4)peay (14)peay
|] } “ i 0Ly
¢l Mels + Jwwo) (Ld)pusddy] ueIS

AN

00¥

US 9,483,512 B2

Sheet 5 of 5

Nov. 1, 2016

U.S. Patent

S ‘OId4
(Y ‘vM)pesy ()pesy (€Y ‘¥ '1¥)pesy
| } ! m — 025
71 HEJS + JWWo) ajeoun.| AR
(G ‘p¥)pesy (G ‘vd ‘ed ‘2 ‘LM)pesy (PM ‘e ‘24 ‘1Y)pesy
G1 HE)S + Jwwo) ¢l uels + Jwwod (gY)pusddy (pd)pusddy |1 ueiS

AN

006

US 9,483,512 B2

1
COLUMNAR DATABASE USING VIRTUAL
FILE DATA OBJECTS

TECHNICAL FIELD

The subject matter described herein relates to techniques
for providing virtual file data objects for use in a columnar
database.

BACKGROUND

Databases can perform large numbers of concurrent trans-
actions involving corresponding data. These concurrent
transactions can result in changes to the same data (e.g., data
records, etc.) which necessitate data isolation among such
transactions.

SUMMARY

In one aspect, a plurality of virtual files are instantiated in
a columnar database. The columnar database includes a
columnar data store that persists tables of data contained
therein to the plurality of virtual files. Each virtual file is
stored in physical data storage and a portion of the virtual
file can be cached transiently in a persistence layer inter-
mediate the columnar data store and the physical data
storage. The virtual files each comprise a database object for
storing data records. Operation are processed, in the colum-
nar database, using the virtual files such that changes to
virtual files resulting from the operations of one transaction
are isolated from changes on the same virtual files resulting
from the operations of other transactions.

At least one data record for a first transaction can be
appended while at least one other transaction is being
executed. The appended at least one data record is made
available for other transactions after the first transaction
commits. At least one data record for a second transaction
can be truncated while at least one other transaction is being
executed, the truncated at least one data record (i.e., the
record without being truncated) is made available to other
transactions prior to the second transaction committing.

Each virtual file can be stored in a chain of database pages
in the persistence layer. The database pages can have a fixed
size or a variable size. References to a corresponding
starting database page and a corresponding ending database
page can be stored in metadata. A link to a last overwrite
record for a virtual file can be stored in metadata such that
the overwrite record specifies truncaction changes made to
the virtual file. The metadata can be stored in a container
directory that can be accessed to identify a most current
version of a virtual file.

Articles of manufacture are also described that comprise
computer executable instructions permanently stored on
non-transitory computer readable media, which, when
executed by a computer, causes the computer to perform
operations herein. Similarly, computer systems are also
described that may include a processor and a memory
coupled to the processor. The memory may temporarily or
permanently store one or more programs that cause the
processor to perform one or more of the operations
described herein. In addition, operations specified by meth-
ods can be implemented by one or more data processors
either within a single computing system or distributed
among two or more computing systems.

The subject matter described herein provides many
advantages. For example, the virtual files described herein
provide ACID (atomicity, consistency, isolation, durability)

10

20

25

30

35

40

45

50

55

60

65

2

properties that in turn enable that database transactions to be
properly processed, while at the same time, providing fast
and scalable access to a large number (millions) of virtual
files by a columnar data store. In addition, various special
operations needed for implementation of distributed colum-
nar database system can be easily implemented on top of
virtual files.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating a system including a data
storage application;

FIG. 2 is a process flow diagram illustrating the use of
virtual files by a columnar database;

FIG. 3 is a diagram illustrating details of the system of
FIG. 1,

FIG. 4 is a diagram illustrating appending virtual files
while transactions are being concurrently executed; and

FIG. 5 is a diagram illustrating truncating virtual files
while transactions are being concurrently executed.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example of a system 100 in which a
computing system 102, which can include one or more
programmable processors that can be collocated, linked over
one or more networks, etc., executes one or more modules,
software components, or the like of a data storage applica-
tion 104. The data storage application 104 can include one
or more of a database, an enterprise resource program, a
distributed storage system (e.g. NetApp Filer available from
NetApp of Sunnyvale, Calif.), or the like.

The one or more modules, software components, or the
like can be accessible to local users of the computing system
102 as well as to remote users accessing the computing
system 102 from one or more client machines 106 over a
network connection 110. One or more user interface screens
produced by the one or more first modules can be displayed
to a user, either via a local display or via a display associated
with one of the client machines 106. Data units of the data
storage application 104 can be transiently stored in a per-
sistence layer 112 (e.g. a page buffer or other type of
temporary persistency layer), which can write the data, in
the form of storage pages, to one or more storages 114, for
example via an input/output component 116. The one or
more storages 114 can include one or more physical storage
media or devices (e.g. hard disk drives, persistent flash
memory, random access memory, optical media, magnetic
media, and the like) configured for writing data for longer
term storage. It should be noted that the storage 114 and the
input/output component 116 can be included in the comput-
ing system 102 despite their being shown as external to the
computing system 102 in FIG. 1.

Data retained at the longer term storage 114 can be
organized in pages, each of which has allocated to it a
defined amount of storage space. In some implementations,
the amount of storage space allocated to each page can be
constant and fixed. However, other implementations in

US 9,483,512 B2

3

which the amount of storage space allocated to each page
can vary are also within the scope of the current subject
matter.

FIG. 2 is a process flow diagram 200 in which, at 210, a
plurality of wvirtual files are instantiated in a columnar
database. The columnar database includes a columnar data
store that persists tables of data contained therein to the
plurality of virtual files. Each virtual file is stored in sec-
ondary storage and portions of each virtual file may be
transiently cached in a persistence layer intermediate the
columnar data store and physical data storage. In addition,
each virtual file comprises a database object for storing data
records. After the virtual files are instantiated, at 220,
operations are processed in the columnar database using the
virtual files such that changes to virtual files resulting from
the operations of one transaction are isolated from changes
to the same virtual files resulting from the operations of
other transactions.

FIG. 3 shows a software architecture 300 consistent with
one or more features of the current subject matter. A data
storage application 104, which can be implemented in one or
more of hardware and software, can include one or more of
a database application, a network-attached storage system,
or the like. According to at least some implementations of
the current subject matter, such a data storage application
104 can include or otherwise interface with a persistence
layer 112 or other type of memory buffer, for example via a
persistence interface 302. A page buffer 304 within the
persistence layer 112 can store one or more logical pages
306, and optionally can include shadow pages 311, active
pages 313, data pages of virtual files 315 (i.e., a data objects
acting like a file) and the like. The logical pages 306 retained
in the persistence layer 112 can be written to a storage (e.g.
a longer term storage, etc.) 114 via an input/output compo-
nent 116, which can be a software module, a sub-system
implemented in one or more of software and hardware, or
the like. The storage 114 can include one or more data
volumes 310 where stored pages 312 are allocated at physi-
cal memory blocks.

In some implementations, the data storage application 104
can include a row store 303 and a column store 305. The row
store 303 can comprise or be otherwise in communication
with a page manager 314 and/or a savepoint manager 316.
The page manager 314 can communicate with a page
management module 320 at the persistence layer 112 that
can include a free block manager 322 that monitors page
status information 324, for example the status of physical
pages within the storage 114 and logical pages in the
persistence layer 112 (and optionally in the page buffer 304).
The savepoint manager 316 can communicate with a save-
point coordinator 326 at the persistence layer 204 to handle
savepoints, which are used to create a consistent persistent
state of the database for restart after a possible crash. The
row store 303 can access the persistence interface 302 via an
absolute page API 307. The column store 305 which can
store columns in contiguous memory can access the persis-
tence interface 302 via a virtual file API 309.

In some implementations of a data storage application
104, the page management module of the persistence layer
112 can implement shadow paging. The free block manager
322 within the page management module 320 can maintain
the status of physical pages. The page buffer 304 can
included a fixed page status buffer that operates as discussed
herein. A converter component 340, which can be part of or
in communication with the page management module 320,
can be responsible for mapping between logical and physical
pages written to the storage 114. The converter 340 can

20

25

40

45

55

4

maintain the current mapping of logical pages to the corre-
sponding physical pages in a converter table 342. The
converter 340 can maintain a current mapping of logical
pages 306 to the corresponding physical pages in one or
more converter tables 342. When a logical page 306 is read
from storage 114, the storage page to be loaded can be
looked up from the one or more converter tables 342 using
the converter 340. When a logical page is written to storage
114 the first time after a savepoint, a new free physical page
is assigned to the logical page. The free block manager 322
marks the new physical page as “used” and the new mapping
is stored in the one or more converter tables 342.

The persistence layer 112 can ensure that changes made in
the data storage application 104 are durable and that the data
storage application 104 can be restored to a most recent
committed state after a restart. Writing data to the storage
114 need not be synchronized with the end of the writing
transaction. As such, uncommitted changes can be written to
disk and committed changes may not yet be written to disk
when a writing transaction is finished. After a system crash,
changes made by transactions that were not finished can be
rolled back. Changes occurring by already committed trans-
actions should not be lost in this process. A logger compo-
nent 344 can also be included to store the changes made to
the data of the data storage application in a linear log. The
logger component 344 can be used during recovery to replay
operations since a last savepoint to ensure that all operations
are applied to the data and that transactions with a logged
“commit” record are committed before rolling back still-
open transactions at the end of a recovery process.

With some data storage applications, writing data to a disk
is not necessarily synchronized with the end of the writing
transaction. Situations can occur in which uncommitted
changes are written to disk and while, at the same time,
committed changes are not yet written to disk when the
writing transaction is finished. After a system crash, changes
made by transactions that were not finished must be rolled
back and changes by committed transaction must not be lost.

To ensure that committed changes are not lost, redo log
information can be written by the logger component 344
whenever a change is made. This information can be written
to disk at latest when the transaction ends. The log entries
can be persisted in separate log volumes 317 while normal
data is written to data volumes 310. With a redo log,
committed changes can be restored even if the correspond-
ing data pages were not written to disk. For undoing
uncommitted changes, the persistence layer 112 can use a
combination of undo log entries (from one or more logs) and
shadow paging.

The persistence interface 302 can handle read and write
requests of stores (e.g., in-memory stores, etc.). The persis-
tence interface 302 can also provide write methods for
writing data both with logging and without logging. If the
logged write operations are used, the persistence interface
302 invokes the logger 344. In addition, the logger 344
provides an interface that allows stores (e.g., in-memory
stores, etc.) to directly add log entries into a log queue. The
logger interface also provides methods to request that log
entries in the in-memory log queue are flushed to disk.

Log entries contain a log sequence number, the type of the
log entry and the identifier of the transaction. Depending on
the operation type additional information is logged by the
logger 344. For an entry of type “update”, for example, this
would be the identification of the affected record and the
after image of the modified data.

When the data application 104 is restarted, the log entries
need to be processed. To speed up this process the redo log

US 9,483,512 B2

5

is not always processed from the beginning. Instead, as
stated above, savepoints can be periodically performed that
write all changes to disk that were made (e.g., in memory,
etc.) since the last savepoint. When starting up the system,
only the logs created after the last savepoint need to be
processed. After the next backup operation the old log
entries before the savepoint position can be removed.

When the logger 344 is invoked for writing log entries, it
does not immediately write to disk. Instead it can put the log
entries into a log queue in memory. The entries in the log
queue can be written to disk at the latest when the corre-
sponding transaction is finished (committed or aborted). To
guarantee that the committed changes are not lost, the
commit operation is not successfully finished before the
corresponding log entries are flushed to disk. Writing log
queue entries to disk can also be triggered by other events,
for example when log queue pages are full or when a
savepoint is performed.

The column store 305 can persist its tables to virtual files
provided by the persistence layer 112 via the virtual file API
307. Internally the persistence layer 112 can map a virtual
file to a chain of linked pages 315 stored in the page buffer
304. Data belonging to one columnar table can be stored in
multiple virtual files: one virtual file per column for a main
storage and one virtual file for a delta log. In addition, one
virtual file can optionally be stored per column for the main
storage of the history part of the table, and/or one virtual file
can optionally be stored per table for the delta of the history
part of the table. The persistence layer 112 can maintain a
directory that stores for each virtual file the start page and
additional information such as the size and the type of the
virtual file.

As stated above, virtual files can be used to store main and
delta parts of columnar tables. These files can be read on the
first access of the corresponding table into memory. With
some implementations, while read accesses happen only on
the in-memory representation of data, updates, appends,
overwrites and truncates can also be written to the virtual file
on disk. After moving of a virtual file from a source node to
a destination node, the virtual file can be read into memory
on first access on the destination node. To support recovery
from log backup, moving a virtual file from one node to the
other (if the techniques described below are not incorpo-
rated) can either require writing a redo log on the destination
node for all moved data or explicit expensive synchroniza-
tion of recovery on several nodes, which is in both cases too
big performance penalty.

The content of a main storage can only change when a
delta merge operation is performed. Therefore the main
virtual files can only be written when a merge is done. Note
that this does not mean that main data is written to disk
during a merge operation: when the column store 305 writes
to a virtual file, the data can be written into the page buffer
304 of the persistence layer 112. It is the responsibility of the
persistence layer 112 to determine when the data in the
virtual file is actually flushed to disk (e.g., during page
replacement or at latest when the next savepoint is written,
etc.).

A delta merge operation is unique to the column store 305
and is not synchronized with the savepoints of the persis-
tence layer 112. Delta merge is primarily an optimization of
in-memory structures performed on the granularity of a
single table. The savepoint, on the other hand, works on the
whole database and its purpose is to persist changes to disk.

All changes executed on column store 305 data go into
delta storages in the data volumes 310. The delta storages
can exist only in memory as opposed to be written to disk.

10

15

20

25

30

35

40

45

50

55

60

65

6

However, the column store 305 can, via the logger 344, write
a persisted delta log that contains logical redo log entries for
all operations executed on the delta storages. Logical log, in
this context, means that the operation and its parameters are
logged but no physical images are stored. When a delta
merge operation is executed, the changes in the delta storage
can be merged into the main storage and the delta log virtual
file can be truncated.

The delta log virtual files are not really logs from the
persistence layer 112 point of view. For the persistence layer
112 they are just data. The actual redo log and undo entries
can be written a log volume 317 in the persistence layer 112.
The virtual files used for delta logs can be configured as
logged. Whenever column store 305 writes to the delta log
virtual file, the persistence layer interface 302 invokes the
logger 344 and an undo manager to write redo log entries
and undo information. This ensures that the delta log virtual
files can be restored after a restart—just like any other data.
After the delta log virtual files are restored they are ready to
be processed by column store 305 to rebuild the in-memory
delta storages from the logical delta log entries.

During a delta merge operation the main files for the
affected table(s) can be rewritten and the delta log file can be
truncated. For all these operations no log is written by the
persistence layer 112. This is possible, because all opera-
tions executed on the tables were already logged when the
delta files were written as part of the original change
operation. The merge operation does not change, create or
delete any information in the database. It is just a reorga-
nization of the way existing information is stored. To
prevent that logs are written for a merge operation, the
virtual main files are configured as not logged and a special
not logged operation is used for delta log truncation.

During restart, the persistence layer 112 can restore the
main virtual files from the last savepoint. The delta log
virtual files can be restored from the last savepoint and from
the redo log. When the persistence layer 112 has finished its
part, the main storage of the columns can be loaded from the
virtual files into column-store memory. This involves
memory copy operations between data cache in the page
buffer 304 of the persistence layer 112 and the contiguous
memory areas in column store 305. The column store 305
can then execute the logical redo entries from delta log
virtual files and rebuild the in-memory delta storages. As
mentioned above, there is metadata that allows to define for
each columnar table whether it is to be loaded during system
startup. If a table is configured for loading on demand, the
restore sequence for that table is executed on first access.

As used herein, virtual file can be characterized as a
database object that simulates a file in the file system. A
virtual file can be identified by a numeric identifier, such as
an 8-byte ID (or indirectly by namespace+name). Virtual
files can support streaming read and write I/O requests with
one written stream being considered as an atomic block
(with regard to parallel writes). Virtual files, as stated above,
can provide a basis for storing columnar data (with a virtual
file per column and a virtual file for delta information).
Virtual files additionally can provide support for binary large
objects (BLOBSs), arbitrary data, SAP liveCache variable-
sized objects, etc. Furthermore, virtual files can provide
generic transactional support and transactional isolation.
Reading virtual file honors transaction isolation level, so
only committed, already-visible data (depending on trans-
actional isolation level) are read. Further, virtual file has full
rollback support.

Virtual files can also provide backup and recovery support
together with the rest of the data storage application 104.

US 9,483,512 B2

7

They also provide explicitly-controlled redo logging includ-
ing changes persisted at the latest by a savepoint and support
for columnar merges. Lastly, virtual files can provide sup-
port for other advanced operations, such as “lazy” file
movement within a landscape (via link handling).

A virtual file, as described herein, can be anchored in
some kind of container directory, which contains metadata
about database objects and which is accessed in order to
determine a most current virtual file or state thereof, etc. As
the virtual file is stored in a chain of database pages, which
can be of same or various sizes, the starting and ending page
is stored in metadata. Links to previous and next page in the
chain can be stored in individual page headers. Additionally,
a link to a last overwrite record (see later) can be also stored
in metadata. Each operation on the virtual file can operate on
this page chain and creates record(s) with a small header and
user data in this page chain. Each page of virtual file can
normally contain at least one record. Also, a minimum (i.e.,
optimal) number of records can be used to store data in
virtual file.

Appending to a virtual file. To enable highly-parallel
operation, an append operation can first spool data streamed
to it into an in-memory buffer. When the stream is closed,
this data can be added as one or series of data records under
a lock at the end of the page chain (one record per page). As
the data is added under a lock, the whole append is atomic.

To support transaction isolation and consistent read, each
data record can include the following in a header: (i) creating
TID; (i1) deleting TID; and record data size (data follows
immediately after the header). Creating TID can be set to the
transaction ID of the transaction creating the data record
(appending new data). Deleting TID can be unset at creation
and can be set at truncation/overwrite to the transaction 1D
of the truncating transaction (as further described below).

When a transaction appending data to a virtual file aborts,
it can simply unset creating TID of the records added by this
transaction, effectively invalidating the new data records.
When an undo operation detects that there are no valid
records on the page (i.e., all records are undone, etc.), the
page can be removed from page chain and reclaimed imme-
diately (but this is not strictly necessary).

FIG. 4 is a diagram 400 which illustrates a series of
transactions T1-T7 (across three timelines 410, 420, 430
which partially temporally overlap) in which there is snap-
shot isolation on a transaction level. At the start of T1 (in
timeline 410), a corresponding virtual file is initially empty
and is later appended with a record R1. Subsequent to the
start of T1 but before the append of record R1, a second
transaction T2 is initiated (in timeline 420) in which a
second record R2 is appended. The first record R1 is read as
part of the first transaction T1 and the second record R2 is
read as part of the second transaction T2 (the second
transaction T2 can only read the second record R2 because
the first record R1 has not yet been committed). Thereafter,
the first transaction T1 is committed which results in a third
transaction T3 being initiated. In parallel, a fourth transac-
tion T4 (in timeline 430) is later initiated. At this point, only
record R1 has been committed and so, at this point, the
fourth transaction T4 can only read the first record R1.
Subsequently (in timeline 420), the second transaction is
committed and a fifth transaction T5 is initiated. At this
point, only the first record R1 and the second record R2 have
been committed and so the second transaction T2 reads these
records R1, R2. In parallel, as part of the fourth transaction
T4, a third record R3 is appended and so a read operation
reads the first record R1 and the third record R3 (because the
fourth transaction T4 was initiated prior to the commit of the

10

20

25

30

35

40

45

50

55

60

8

second transaction T2 in which the second record R2 was
appended). Thereafter, the fourth transaction T4 is commit-
ted which results in a sixth transaction T6 which reads
records R1, R2, R3 (all of which have been committed at
such point). Similarly, the fifth transaction T5 is committed
which results in a seventh transaction T7 which also reads
records R1, R2, R3.

Truncating/overwriting a virtual file. Truncate and over-
write operations can also operate under a lock on the virtual
file. With such an arrangement, each virtual file can have an
associated lock, which is taken when a changing operation
on the file is in progress. This includes finishing of an
append operation (transferring data from in-memory buffer
to the virtual file), a truncation operation, and an overwrite
operation (which is truncation+appending new data). This
ensures that the operations on the virtual file are serialized
and internal structures are not damaged.

Truncations operations can add a special truncation record
and set deleting TID of visible data records between last
visible position (or start of page chain, if no last visible
position exists, as further described below) and the new
truncation record. In case of overwrite, streamed data can be
written as new data records at the end of virtual file (same
as appending data).

To facilitate transaction isolation and consistency, trun-
cating/overwriting the virtual file can add a special trunca-
tion record with following header and no data: (i) creating
TID; (i) link to the oldest readable position (page+offset);
and (iii) link to the previous truncation record (page+offset).

At the same time, the link to truncation record can be
updated in the virtual file metadata in the container directory
to point to the newest truncation record.

In one implementation, truncation/overwrite can work as
follows. The algorithm can start with a last known truncation
record, as stored in virtual file metadata in container direc-
tory. If this truncation record is not visible and thus the
truncation itself is not visible (i.e., creating TID of trunca-
tion record belongs to a parallel or newer transaction), then
this is an error (parallel transaction truncating the virtual
file). If no truncation record exists, the algorithm assumes
beginning of the virtual file as a kind of truncation record.

A new truncation record can be written at the end of the
virtual file, with creating TID set to the TID of the truncating
transaction, link to the oldest readable position is not set and
link to previous truncation record can be set to the position
of previous truncation record, if it exists, or, otherwise, to the
beginning of the virtual file. The link to the truncation record
in virtual file metadata can be updated to point to the new
truncation record.

The link to the oldest readable position can be read from
the previous truncation record, if it exists (the beginning of
the virtual file is used otherwise). This position was stored
during previous file truncation operation and points to the
oldest data record, which was written by a transaction newer
or parallel to the previous truncation transaction.

Then, marking of truncated records can start from this
position. For each data record found, creating TID of this
data record is checked for visibility. If the data record is
visible (i.e., its creating TID belongs to a transaction older
than truncation transaction and creating transaction is not
parallel to truncation transaction), then its deleting TID can
be set to the TID of the truncating transaction. If the data
record is NOT visible and its deleting TID is NOT set and
it is the first such not visible record, link to its position is
stored as the oldest readable position in the new truncation
record. The algorithm can repeat for all records up to the
new truncation record.

US 9,483,512 B2

9

If the oldest readable position was not found, it means no
records have been added in parallel transactions. In this case,
the link to the oldest readable position can be set to point to
the new truncation record.

In case of overwrite, new data can be appended just like
in append case described above after the truncation finishes.

When a transaction truncating a virtual file aborts, it can
simply unset deleting TIDs of all records where it set
deleting TIDs during the truncation operation, then it can
reset the link in virtual file metadata to point to the previous
truncation record and then it can invalidate the new trunca-
tion record (e.g., by unsetting creating TID, so the record
will be ignored by other operations).

FIG. 5 is a diagram 500 which illustrates a series of
transactions T1-T5 across two timelines 510, 520 which
partially temporally overlap. At the time a first transaction
T1 (in timeline 510) is initiated, a corresponding virtual file
contains three records R1, R2, R3. Thereafter, a fourth
record R4 is appended (and a read operation is subsequently
performed by the first transaction T1 which reads all four
records R1, R2, R3, R4). Thereafter, a second transaction T2
is initiated (in timeline 520). At this point, all three records
R1, R2, R3 are read by the second transaction. The second
transaction T2 initiates a truncate operation which causes all
records to be purged. However, this truncation does not
affect the first transaction T1 until it has been committed. In
the meantime, a fifth record has been added R5 and com-
mitted. Thus, at the point the second transaction T2 is
committed, the virtual file contains records R4, R5 (because
they were not part of the truncation) which are read as part
of a subsequent fourth transaction T4 in timeline 520) and a
subsequent fifth transaction T5 (in timeline 510).

Reading a virtual file. First, oldest visible data record for
a reading transaction can be determined. A reading transac-
tion can “see” all visible data records starting from the last
visible truncation record and also any data records appended
in parallel transactions while truncation ran. To determine
the first read position, the algorithm can start with the last
known truncation record, as stored in virtual file metadata in
container directory. If this truncation record is not visible
and thus the truncation itself is not visible (i.e., creating TID
of the truncation record belongs to a parallel or newer
transaction), then link to the previous truncation record can
be followed and the algorithm can repeat with the previous
truncation record.

When the last visible truncation record is determined, the
link to the oldest readable position can be read from this
truncation record. This position can be stored during file
truncation operation and points to oldest data record, which
was written by a transaction newer or parallel to truncation
transaction (see above). This is also the first record, from
where reading starts.

If there was no truncation record found, then the reading
can start from the beginning of the virtual file.

With this information, the reader of the virtual file can
simply read all records starting at the oldest visible data
record for this reader, where creating TID can be visible (i.e.,
belongs to a transaction not newer than own TID and not
running in parallel to the reading transaction) and deleting
TID can be unset or invisible (i.e., belongs to a transaction
newer than own TID or running in parallel to the reading
transaction). This read operation can be repeated any num-
ber of times and will return always the same data for the
same transaction (except when the transaction itself modi-
fied the virtual file).

Garbage collection of a virtual file. As data is always
appended at the end, the virtual file would grow indefinitely,

25

30

40

45

55

65

10

even in presence of truncates. But, only data visible to any
running transaction are needed, old data can be garbage-
collected. Garbage collection can be performed for each
truncation record, when the minimum TID of all reading
transactions passes TID of the truncation record. The track-
ing of minimum read TID and execution of garbage collec-
tion itself can be performed, for example, by a history
manager of the database. Important is, the garbage collection
is executed only for records, which are not needed by any
reading transaction.

Garbage collection of a virtual file can be extremely
simple—all pages in the page chain of the virtual file before
the oldest readable position as stored in the truncation record
can be removed from the page chain and returned to the free
space management. In a shadow-paging database (as
described above), these pages can stay on the disk as shadow
pages, until the next savepoint is executed, which will then
reclaim free space. Stated differently, logical space is freed
upon garbage collection while physical space is freed upon
a savepoint.

Special operations on a virtual file. A virtual file can
support a number of special operations. To support such
operations, an extended data record, which represents the
operation, can be appended to the virtual file. Then, such
operation can be truncated and garbage-collected like any
normal append operation.

Aspects of the subject matter described herein can be
embodied in systems, apparatus, methods, and/or articles
depending on the desired configuration. In particular, vari-
ous implementations of the subject matter described herein
can be realized in digital electronic circuitry, integrated
circuitry, specially designed application specific integrated
circuits (ASICs), computer hardware, firmware, software,
and/or combinations thereof. These various implementations
can include implementation in one or more computer pro-
grams that are executable and/or interpretable on a program-
mable system including at least one programmable proces-
sor, which can be special or general purpose, coupled to
receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device,
and at least one output device.

These computer programs, which can also be referred to
programs, software, software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the term “machine-readable medium” refers to any
computer program product, apparatus and/or device, such as
for example magnetic discs, optical disks, memory, and
Programmable Logic Devices (PLDs), used to provide
machine instructions and/or data to a programmable proces-
sor, including a machine-readable medium that receives
machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable
processor. The machine-readable medium can store such
machine instructions non-transitorily, such as for example as
would a non-transient solid state memory or a magnetic hard
drive or any equivalent storage medium. The machine-
readable medium can alternatively or additionally store such
machine instructions in a transient manner, such as for
example as would a processor cache or other random access
memory associated with one or more physical processor
cores.

The subject matter described herein can be implemented
in a computing system that includes a back-end component,

US 9,483,512 B2

11

such as for example one or more data servers, or that
includes a middleware component, such as for example one
or more application servers, or that includes a front-end
component, such as for example one or more client com-
puters having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described herein, or any combination of
such back-end, middleware, or front-end components. A
client and server are generally, but not exclusively, remote
from each other and typically interact through a communi-
cation network, although the components of the system can
be interconnected by any form or medium of digital data
communication. Examples of communication networks
include, but are not limited to, a local area network
(“LAN”), a wide area network (“WAN™), and the Internet.
The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

The implementations set forth in the foregoing description
do not represent all implementations consistent with the
subject matter described herein. Instead, they are merely
some examples consistent with aspects related to the
described subject matter. Although a few variations have
been described in detail herein, other modifications or addi-
tions are possible. In particular, further features and/or
variations can be provided in addition to those set forth
herein. For example, the implementations described above
can be directed to various combinations and sub-combina-
tions of the disclosed features and/or combinations and
sub-combinations of one or more features further to those
disclosed herein. In addition, the logic flows depicted in the
accompanying figures and/or described herein do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. The scope of the follow-
ing claims may include other implementations or embodi-
ments.

What is claimed is:

1. A non-transitory computer program product storing
instructions that, when executed by at least one program-
mable processor, cause the at least one programmable pro-
cessor to perform operations comprising:

persisting a table of a columnar database to a plurality of

virtual files provided by a persistence layer of the
columnar database, the columnar database comprising
a columnar data store and a physical data storage, the
persistence layer being intermediate to the physical
data storage and the columnar data store, each virtual
file of the plurality of virtual files being stored in the
physical data storage and comprising a database object
for storing data records, some or all of the plurality of
virtual files being available for transient caching in the
persistence layer;

processing, in the columnar database, operations using a

virtual file of the plurality of virtual files, the operations
comprising at least one of truncation, overwriting, and
appending of data records in the virtual file;

storing, as part of the processing, truncation records for

the virtual file in virtual file metadata, each truncation
record comprising a creating transaction identifier
(TID) for a truncation operation associated with the
truncation record, information identifying an oldest
readable position, and information identifying a last
previous truncation record to the truncation record;
truncating the virtual file as part of a first transaction while
second transaction is being executed at least partially in
parallel with the first transaction such that the virtual

10

15

20

25

30

35

40

45

50

55

60

65

12

file is available to the second transaction prior to the

first transaction committing, the truncating comprising:

identifying a last known truncation record in the virtual
file metadata, the last known truncation record hav-
ing been stored during a most recent previous trun-
cation operation, the last known truncation record
pointing to an oldest readable position, the oldest
readable position comprising an oldest data record in
the virtual file that was written after or during the
most recent previous truncation operation;

reviewing the creating TID for each of one of more data
records in the virtual file newer than the oldest
readable position;

marking a data record of the one or more data records
with a deleting TID corresponding to the first trans-
action when the creating TID for the data record
belongs to a transaction older than the first transac-
tion or storing a link to the data record as a new
oldest readable position when the creating TID for
the data record does not belong to any transaction
older than the first transaction.

2. A computer program product as in claim 1, wherein the
operations further comprise:

appending at least one data record for the first transaction

while at least one other transaction is being executed,
the appended at least one data record being available
for other transactions after the first transaction com-
mits.

3. A computer program product as in claim 1, wherein
each virtual file is stored in a chain of database pages in the
persistence layer.

4. A computer program product as in claim 3, wherein the
database pages have a fixed size.

5. A computer program product as in claim 3, wherein the
database pages have varying sizes.

6. A computer program product as in claim 3, wherein the
operations further comprise:

storing, for each virtual file, references to a corresponding

starting database page and a corresponding ending
database page in metadata.

7. A computer program product as in claim 1, wherein the
operations further comprise:

storing the metadata in a container directory, the container

directory being accessed to identify a most current
version of a virtual file.

8. A method comprising:

persisting a table of a columnar database to a plurality of

virtual files provided by a persistence layer of the
columnar database, the columnar database comprising
a columnar data store and a physical data storage, the
persistence layer being intermediate to the physical
data storage and the columnar data store, each virtual
file of the plurality of virtual files being stored in the
physical data storage and comprising a database object
for storing data records, some or all of the plurality of
virtual files being available for transient caching in the
persistence layer;

processing, in the columnar database, operations using a

virtual file of the plurality of virtual files, the operations
comprising at least one of truncation, overwriting, and
appending of data records in the virtual file;

storing, as part of the processing, truncation records for

the virtual file in virtual file metadata, each truncation
record comprising a creating transaction identifier
(TID) for a truncation operation associated with the
truncation record, information identifying an oldest

US 9,483,512 B2

13

readable position, and information identifying a last
previous truncation record to the truncation record;
truncating the virtual file as part of a first transaction while
second transaction is being executed at least partially in
parallel with the first transaction such that the virtual
file is available to the second transaction prior to the
first transaction committing, the truncating comprising:
identifying a last known truncation record in the virtual
file metadata, the last known truncation record hav-
ing been stored during a most recent previous trun-
cation operation, the last known truncation record
pointing to an oldest readable position, the oldest
readable position comprising an oldest data record in
the virtual file that was written after or during the
most recent previous truncation operation;
reviewing the creating TID for each of one of more data
records in the virtual file newer than the oldest
readable position;
marking a data record of the one or more data records
with a deleting TID corresponding to the first trans-
action when the creating TID for the data record
belongs to a transaction older than the first transac-
tion or storing a link to the data record as a new
oldest readable position when the creating TID for
the data record does not belong to any transaction
older than the first transaction.

9. A method as in claim 8, further comprising:

appending at least one data record for the first transaction

while at least one other transaction is being executed,
the appended at least one data record being available
for other transactions after the first transaction com-
mits.

10. A method as in claim 8, wherein each virtual file is
stored in a chain of database pages in the persistence layer.

11. A method as in claim 10, wherein the database pages
have a fixed size.

12. A method as in claim 10, wherein the database pages
have varying sizes.

13. A method as in claim 10, further comprising: storing,
for each virtual file, references to a corresponding starting
database page and a corresponding ending database page in
metadata.

14. A method as in claim 8, further comprising: storing the
virtual file metadata in a container directory, the container
directory being accessed to identify a most current version
of the virtual file.

15. A system comprising:

at least one programmable processor;

memory coupled to the at least one programmable pro-

cessor, the memory storing instructions, which when

10

20

25

30

35

40

45

14

executed by the at least one programmable processor,
cause the at least one programmable processor to
perform operations comprising:
persisting a table of a columnar database to a plurality of
virtual files provided by a persistence layer of the
columnar database, the columnar database comprising
a columnar data store and a physical data storage, the
persistence layer being intermediate to the physical
data storage and the columnar data store, each virtual
file of the plurality of virtual files being stored in the
physical data storage and comprising a database object
for storing data records, some or all of the plurality of
virtual files being available for transient caching in the
persistence layer;
processing, in the columnar database, operations using a
virtual file of the plurality of virtual files, the operations
comprising at least one of truncation, overwriting, and
appending of data records in the virtual file;
storing, as part of the processing, truncation records for
the virtual file in virtual file metadata, each truncation
record comprising a creating transaction identifier
(TID) for a truncation operation associated with the
truncation record, information identifying an oldest
readable position, and information identifying a last
previous truncation record to the truncation record;
truncating the virtual file as part of a first transaction while
second transaction is being executed at least partially in
parallel with the first transaction such that the virtual
file is available to the second transaction prior to the
first transaction committing, the truncating comprising:
identifying a last known truncation record in the virtual
file metadata, the last known truncation record hav-
ing been stored during a most recent previous trun-
cation operation, the last known truncation record
pointing to an oldest readable position, the oldest
readable position comprising an oldest data record in
the virtual file that was written after or during the
most recent previous truncation operation;
reviewing the creating TID for each of one of more data
records in the virtual file newer than the oldest
readable position;
marking a data record of the one or more data records
with a deleting TID corresponding to the first trans-
action when the creating TID for the data record
belongs to a transaction older than the first transac-
tion or storing a link to the data record as a new
oldest readable position when the creating TID for
the data record does not belong to any transaction
older than the first transaction.

#* #* #* #* #*

